在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁。
在分布式架构中,我们同样会遇到数据共享操作问题,本文章使用Redis来解决分布式架构中的数据一致性问题。
1. 单机数据一致性单机数据一致性架构如下图所示:多个可客户访问同一个服务器,连接同一个数据库。
场景描述:客户端模拟购买商品过程,在Redis中设定库存总数剩100个,多个客户端同时并发购买。
使用Jmeter模拟高并发场景,测试结果如下:
测试结果出现多个用户购买同一商品,发生了数据不一致问题!
解决办法:单体应用的情况下,对并发的操作进行加锁操作,保证对数据的操作具有原子性
synchronizedReentrantLock 2. 分布式数据一致性上面解决了单体应用的数据一致性问题,但如果是分布式架构部署呢,架构如下:
提供两个服务,端口分别为8001、8002,连接同一个Redis服务,在服务前面有一台Nginx作为负载均衡
两台服务代码相同,只是端口不同
将8001、8002两个服务启动,每个服务依然用ReentrantLock加锁,用Jmeter做并发测试,发现会出现数据一致性问题!
3. Redis实现分布式锁 3.1 方式一取消单机锁,下面使用redis的set命令来实现分布式加锁
SET KEY VALUE [EX seconds] [PX milliseconds] [NX|XX]
EX seconds 设置指定的到期时间(以秒为单位)PX milliseconds 设置指定的到期时间(以毫秒为单位)NX 仅在键不存在时设置键XX 只有在键已存在时才设置上面的代码,可以解决分布式架构中数据一致性问题。但再仔细想想,还是会有问题,下面进行改进。
3.2 方式二(改进方式一)在上面的代码中,如果程序在运行期间,部署了微服务jar包的机器突然挂了,代码层面根本就没有走到finally代码块,也就是说在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁
所以,这里需要对这个key加一个过期时间,Redis中设置过期时间有两种方法:
template.expire(REDIS_LOCK,10, TimeUnit.SECONDS)template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS)第一种方法需要单独的一行代码,且并没有与加锁放在同一步操作,所以不具备原子性,也会出问题
第二种方法在加锁的同时就进行了设置过期时间,所有没有问题,这里采用这种方式
调整下代码,在加锁的同时,设置过期时间:
这种方式解决了因服务突然宕机而无法释放锁的问题。但再仔细想想,还是会有问题,下面进行改进。
3.3 方式三(改进方式二)方式二设置了key的过期时间,解决了key无法删除的问题,但问题又来了
上面设置了key的过期时间为10秒,如果业务逻辑比较复杂,需要调用其他微服务,处理时间需要15秒(模拟场
景,别较真),而当10秒钟过去之后,这个key就过期了,其他请求就又可以设置这个key,此时如果耗时15秒
的请求处理完了,回来继续执行程序,就会把别人设置的key给删除了,这是个很严重的问题!
所以,谁上的锁,谁才能删除
这种方式解决了因服务处理时间太长而释放了别人锁的问题。这样就没问题了吗?
3.4 方式四(改进方式三)在上面方式三下,规定了谁上的锁,谁才能删除,但finally快的判断和del删除操作不是原子操作,并发的时候也会出问题,并发嘛,就是要保证数据的一致性,保证数据的一致性,最好要保证对数据的操作具有原子性。
在Redis的set命令介绍中,最后推荐Lua脚本进行锁的删除,地址
3.5 方式五(改进方式四)在方式四下,规定了谁上的锁,谁才能删除,并且解决了删除操作没有原子性问题。但还没有考虑缓存续命,以及Redis集群部署下,异步复制造成的锁丢失:主节点没来得及把刚刚set进来这条数据给从节点,就挂了。所以直接上RedLock的Redisson落地实现。
3.6 小结分析问题的过程,也是解决问题的过程,也能锻炼自己编写代码时思考问题的方式和角度。
上述测试代码地址
以上就是Redis实现分布式锁的五种方法详解的详细内容,更多关于Redis分布式锁的资料请关注七叶笔记其它相关文章!