七叶笔记 » 数据库 » MongoDB数据库查询性能提高40倍的经历分享

MongoDB数据库查询性能提高40倍的经历分享

实现难度当然是最低的,可是整个任务在第一步只有1万条左右的返回时,消耗的时间竟然达到了惊人38秒。当然这是已经加了索引的结果,否则可能都无法得到结果了。

减少查询次数

瓶颈显而易见,在循环中查询Collection B,增加了网络开销,自然也就增加时间,如果一次查询出所有结果,自然会大大提高效率。也就是说,我要把第一步的结果作为条件一次性传递,做一个$in操作。可是怎么才能做到呢?如果在uid和date上分别做$in操作,那么返回的结果就会是二者单独做$操作的合集,很显然这和要求是不符的。

经过上面的分析,似乎进入了死胡同。其实答案也基本显现了,需要有一个字段可以满足上面的要求,那么这个字段就是uid和date的合体,就命名为uid_date。uid_date是一个新字段,在B中并不存在,在使用之前需要将数据库现有的数据做一下处理。

处理完毕改造程序:

这一番改造颇费时间,主要是前期的数据处理。代码改造完毕,执行下看看吧。

可是,可是…… 45秒

我做错了什么?!

增加返回记录数

我还是坚信上面的优化思路是对的,现在看看数据库能给一些什么线索吧。

登录到数据库服务器,找到MongoDB的日志/data/mongodb/logs/mongod.log。仔细查找,发现在查询数据集B时有很多getMore命令。这就奇怪了,我是一次性查询,为什么还有getMore。

赶紧查下官方的文档,然后发现了下面的内容:

batcSize参数指定了每次返回的个数,默认的101个。那看来这个应该是问题所在。找下pymongo的文档,也可以设置这个参数,那就设个大的吧10000。

再次改造程序如下:

这次总该可以了。

嗯,好了一些,降到了20秒左右。可是,这离1秒只能还差距20倍呢。

返回值减负

当日不能放弃,继续通过日志查找线索,发现还是有很多getMore。通过各方查找,发现mongodb每次最多返回16M的记录,通过getMore日志的比对,发现的确如此。由于B中每条记录的过去庞大,每次只能几百条记录,因此要一次多返回,那就必须要减少每次返回的记录数。因为在计算时,只用了特定索引位置上的数据,所以只返回该条记录就可以了。

最后的代码就不再写了,具体可以参考官方文档的实例。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

相关文章